
CFS for Addressing CPU Resources in Multi-Core
Processors with AA Tree

Prajakta Pawar, S.S.Dhotre, Suhas Patil

Computer Engineering Department

BVDUCOE Pune-43(India)

Abstract- CPU scheduler plays crucial role in operating system
as scheduling is its primary job. The design of operating
system scheduler is proposed to hand out its resources
accurately among applications. The main goal of multi-core
systems is load balancing across cores. Thus methods are
employed to set tasks on cores try to balance runnable tasks
across available resources. All this is made to ensure fair
distribution of CPU and minimize the idling of core. Current
multiprocessing operating systems like Linux use a scheduling
approach to enable efficient resource sharing. The Completely
Fair Scheduler (CFS) design of Linux ensures equal
opportunity among tasks using thread fair scheduling
algorithm. This research work discuss about strategies used by
CFS of Linux. In this paper we will talk about CFS algorithm
in detail. Also this paper proposes a new technique for CFS
which can be implemented using AA Tree. We wrap up this
paper highlighting the usefulness of proposed system and the
future work in certain direction.

Keywords- Operating system, Linux, Process scheduling,
Completely fair scheduler, Interactivity, Fairness.

I. INTRODUCTION
The operating system is software that acts as an

interface between computer hardware and its user. The
principal aim of OS is to make computer system convenient
to make use of and to use hardware resources in proficient
manner. A CPU scheduling is basis of multiprogrammed
operating systems. The aim of multiprogramming is to have
some task running all times to exploit CPU utilization. The
operating system know how to make the computer system
more productive by switching the CPU among processes
[7]. Main goal of multicore system is load balancing across
cores. Thus some strategies are employed to place threads
on cores which aim to balance runnable threads across
available resources. This ensures fair distribution of CPU
time and minimizes the idling of cores. Modern
multiprocessing Operating systems like Linux 2.6 use two
level scheduling approaches to enable efficient resource
sharing. First level uses a distributed run queue model with
per core queues and fair scheduling policies to manage each
core. Further at second level it makes use of a load balancer
which redistributes tasks across available cores [17].

A short-term scheduler is a type of scheduler that
decides which of the ready and in-memory processes are to
be owed a CPU after some interrupt in system. This
scheduler can be preemptive or non-preemptive. It is one of
the core components of a multitasking operating system
such as Linux which is responsible for optimum utilizing
system resources to guarantee that several processes are
being executed simultaneously. Linux is a principal

operating system being developed in the open source
community. Over few years because of increasing number
of Linux users, the CPU scheduler in Linux kernel has been
improved to enhance its performance. And lots of good
schedulers have been implemented by the Linux kernel
developers. Furthermore they are extensively revised to
achieve performance enhancement in terms of interactivity,
fairness and scalability [8].

The Linux 1.0 used simple linked list of runnable
processes and scheduler decision O (N). Then Linux 2.0
included SMP support .Next to it Linux 2.5 uses O (1)
scheduler. There come Linux 2.6.23 CFS with many
improvements [16]. The O (1) and CFS are most popular
Linux schedulers. In Linux the default scheduler used is
Completely Fair Scheduler which was combined into
mainline Linux version 2.6.23. This paper presents detailing
of CFS and its work flow using data structures red black
tree and AA tree.
This paper contributes following aspects:
• To understand the Linux CFS in detail using usual

method of Red black tree.
• To implement AA Tree for entity management in CFS

instead of RB Tree.

 The rest of this paper is organized as follows: In Section 2
analysis of various scheduling approaches is presented
under background heading. The section 3 discuss about
CFS in more detail. Next section 4 proposes alternative
approach for implementation of CFS with alternative
implementation method. Section 5 presents algorithm for
proposed system workflow. Lastly a conclusion is made in
section 6.

II. BACKGROUND
In Linux scheduler 1.2 used a circular queue for run

able task management which operated with a round-robin
scheduling strategy. With this scheduler it was efficient to
add and remove tasks. Also the scheduler wasn't complex,
instead was simple and fast. The next Linux version 2.2
introduced the design of scheduling types, presenting
scheduling policies for real-time tasks, non-real-time tasks
and non-preemptive tasks. The scheduler had support for
symmetric multiprocessing (SMP) too. The former
scheduler 2.4 used O (N) scheduler which operated in O
(N) time as it iterated over each process during a scheduling
action. This scheduler separated time into epochs and in
every epoch, each process was allowed to perform up to its
time slice. When a process did not use its entire time slice,
at that time half of the enduring time slice was added to the

Prajakta Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 913-917

www.ijcsit.com 913

new time slice to let it execute longer in the next epoch. It
uses a goodness function as metric to determine which
process to execute next. In spite of the simplicity of this
approach, it was relatively inefficient, lacked scalability,
and was pathetic for real-time systems. This one also failed
to exploit new hardware architectures such as multi-core
processors. A Linux 2.6, O (1) scheduler solved many of
the problems with the 2.4 scheduler and it is not iterated the
entire task list to identify the process to schedule next. The
O (1) scheduler used a two run queues to keep track of
runnable processes, one for active and other for expired
processes . The scheduler basically dequeue the next task
off the active per-priority run queue to recognize the
process to execute next. Thus O (1) scheduler was much
more scalable and efficient. But in the O (1), large group of
code required to estimate heuristics which was not easy.

Thus to solve the issues in the O (1) scheduler

something required to change. So, Con Kolivas came with a
kernel patch, with Rotating Staircase Deadline Scheduler
(RSDL) included his earlier work on the staircase scheduler
and it included fairness with bounded latency. Then based
around some of the thoughts from Kolivas' work, Ingo
Molnar developed the CFS with fairness in CPU bandwidth
allocation among processes and better interactivity [9].

III. COMPLETELY FAIR SCHEDULER

The previous O (1) Scheduler required one priority
array for RT and non RT tasks and decision algorithm
based on the position in the priority array. With O (1) it is
difficult to calculate CPU share and not easy to achieve
fairness. To treat interactive tasks in O (1), special
heuristics are required. CFS Scheduler is absolute new
design written by Ingo Molnar is the descendant of the O
(1) scheduler in Linux [10]. Notable things about CFS are:
(1) CFS is free of heuristics. (2) Fairness algorithm is
straightforward mathematics. (3) Extendible framework of
CFS, that makes it easy to set up new scheduler algorithms
or even a pluggable scheduler implementation [18].

General principle of this scheduler is to offer maximum

fairness to each task in system in terms of computational
power it is given. The CFS design ensures fairness among
processes using the thread fair scheduling algorithm, which
does the allocation of resources based on the number of
threads in the system instead number of threads in
executing programs.Unlike other schedulers and preceding
Linux implementations, CFS does not maintain any array
with runques for each level [16]. Instead, it maintains the
time ordered red black tree. The distinct goals that CFS is
designed to bring about are: (1) CFS shall make available
finer interactive performance even as maximizing overall
CPU utilization.(2) To make sure balance in allowance of
CPU time to every entity. (3)To pick up the efficiency, by
removal of components like array of runqueue, an
interactive processes identification and heuristics
estimation. (4)The entire scheduler is implemented utilizing
the modular scheduler or group scheduler framework by
introducing Scheduling Classes. CFS uses seperate queue
mechanisms and scheduler decision functions for RT and
non RT tasks (scheduler classes).

A. Basic CFS Algorithm
In multicore systems where primary goal is to fairly

distribute workload across available cores. Thus to balance
runnable threads across available resources, threads are
mapped to cores and stored in core’s run queue. For each
core a respective run queue is created. CFS does not
requires concept of time slice while it only considers
waiting time of task and task with highest need of CPU
time is always scheduled next. This is why CFS is called
completely fair.

The CFS was designed to offer higher interactive
performance while keeping high overall CPU utilization. So
without sacrificing the interactive performance it tries to
provide fairness in each task. This is possible by using
proportional share algorithm in which a share is assigned to
each process and it is related with the weight of the task [1]
[2]. Ingo Molnar describes the original design of CFS
which can be stated in single statement as “CFS models an
ideal, precise and multitasking CPU on real hardware”. This
mean that CFS tries to follow such CPU that can run
numerous processes in parallel while giving each process
equal share of CPU power instead equal share of CPU time.
According to this statement when a single process is
running, it receives 100% CPU power and if two processes
running, each would receive 50% CPU power. In the same
way, if four processes are running then each would get 25%
of CPU power all together. In this manner CPU would be
fair to all processes running in the system, but in reality
such ideal CPU is nonexistent, but CFS tries to look for
such processor in software. On genuine real processor only
one process can be assigned at particular time and all other
processes are waiting during this period which is not fair
because presently running task gets 100% of the CPU
power while all other remaining tasks get 0% of the CPU
power. To remove such unfairness from a system, CFS
keeps track of equal share of the CPU that would have been
available to each process in system. CFS tracks the amount
of time a process waits for the CPU over the ideal processor
and uses this wait time to rank the processes for scheduling.
The process having extensive wait time is considered to
have gravest need of CPU and it is allotted to CPU. When
this selected process is running, its wait time decreases and
eventually the time for other process increases. Thus after
some time there will be some another process with largest
wait time and the presently executing process will be pre-
empted. Using this principle, CFS tries to be fair to all
processes and all the time tries to have system having zero
wait time for every process. Thus every process has a fair
share of CPU.

B. Run Queue
When many processes run at the same time in a system,

all active processes are positioned in an array called a run
queue. Given several threads mapped to a core, with the
help of CFS runqueue management component this
scheduler decides which thread from run queue will run
next. A run queue possibly will hold priority values for
each task and it will be used by the scheduler to find out
which process to run next. This way it acts as a fundamental
data structure in the scheduler implementation. The CFS
algorithm needs following things to imitate “idle, precise
and multitasking CPU”: (1) A way to work out what is the

Prajakta Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 913-917

www.ijcsit.com 914

fair CPU share per task and it is achieved by using run
queue variable (cfs_rqfair_clock). (2)Also a behaviour to
keep track of time for which each task was waiting when
CPU was allotted to currently running task and wait time is
gathered in wait_runtime variable (processwait_runtime)
[11]. A run queue for Linux is defined inside
kernel/sched.c as struct rq [12].

C. Fair Distribution of CPU Bandwidth
To distribute CPU power, each task is assigned a

weight which establishes the share of CPU bandwidth that
tasks will receive. The share given to a process is ratio of its
weight to sum of weight of all active processes in runqueue.
Following expression is used for this: ݏℎܽ݁ݎ = ୱୡ୦ୢ_ୣ୬୲୧୲୷→୪୭ୟୢ.୵୲ୡୱ_୰୯→୪୭ୟୢ.୵୲ …………………….... (Eq1)

Where,
Schd_entity->load.wt is weight of schedulable entity and
cfs_rq->load.wt is total weight of all entities under ruqueue
of CFS.
The time slice that process should get is given by,
݈݁ܿ݅ݏ = ୱୡ୦ୢ_ୣ୬୲୧୲୷→୪୭ୟୢ.୵୲ୡୱ_୰୯→୪୭ୟୢ.୵୲ 		× 		period…………….. (Eq2)

Where,
period is time slice the scheduler tries to execute all tasks.
The time slice received by every task is not a constant and it
is dependent to period, which has assumed a minimum
value of 20ms. Also it is required to prevent unnecessary
scheduling when the number of processes is much larger
than the number of CPU in the system. Virtual runtime is
used by CFS to track progress of every entity and it is
weighted time slice given to every schedulable entity which
is expressed using equation:
	݊ݑݎ_ݎ݅ݒ = delta_exectschd_entity → load.wt 	NICE_0_load

…………….. (Eq3)
Where,
 delta_exect is execution time of process and NICE_0_load
is unity value of weight (1024) [9], [10].

D. CFS Scheduler Classes
CFS includes expandable hierarchical set of scheduler
classes as: (1)rt_sched_class that handles FIFO and RR
tasks with O (1) priority array. (2) fair_sched_class which
handles tasks other than real time tasks with O (log(N)) red
black tree.(3) idle_sched_class that handles idle task [17].

CFS fair_sched_class
Its working is analogous to “fair queuing” for packet
networks where red black tree for task management keeps a
virtual timeline of tasks to schedule. The scheduler decision
is O (1) and reinsertion of a task is O (log (N)) nanoseconds
based accounting. Here task with the longest wait time in
the red black tree is selected next. The nice levels are not
depending on the timeslice and they are multiplicative. Also
sleep time of interactive task is privileged.

Figure 1: CFS Scheduler decision

IV. PROPOSED SYSTEM
This section presents a proposed approach for CFS that

uses the CFS for scheduling and so it includes all the
features of existing CFS algorithm along with some
supplementary data structure implementation [3],[4]. The
analysis results from the interactivity and fairness tests
proves that the CFS has the advantage of being fairer in
CPU bandwidth allotment without compromising
interactivity performance a lot [5]. The CFS uses
wait_runtime to rank the processes as well as to find out
amount of time for which process is permitted to execute
ahead of being preempted [6]. This paper presents the new
proposal of using new maintenance algorithm for balanced
tree structures called AA Tree. The scheme suggested here
is an ongoing project which implements CFS in both ways,
by using red black tree as well as AA tree. There after
implementing it both ways, finally it compares results of the
two. Following system flow diagram depicts the work flow
of proposed system.

….

Figure 2: Workflow of proposed system

 Start

peak scheduler class

Runable process
available?

Select next process
of scheduler class

Select next
scheduler class

Yes

No

Task 1

Task 2

Task 3

Task n

Share allocation

CFS Scheduler

Sample tasks

Using Red
Black Tree

 Using
AA Tree

 Calculate
performance

Prajakta Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 913-917

www.ijcsit.com 915

A. Red Black Tree
Red black tree data structure is a form of self balancing

binary search tree which is used in CFS to sort runnable
tasks. Leftmost leaf in this tree has smallest value and
larger value is in right child. A leftmost node in Red black
tree represents a node having gravest need of CPU, thus
CFS selects the leftmost process. The leaf nodes in red
black tree do not contain data [13]. As the system
progresses forward, newly awakened processes are set in
the tree beyond and farther to the right gradually but at the
same time for sure it is giving every process an opportunity
to become leftmost process [11].

Figure 3: Example of Red black tree

B. AA Tree
In red black trees the implementation and number of

rotation cases is complex as compared to AA tree. AA trees
are named after its inventor Arne Andersson and it’s an
optimization over original definition of Binary B-trees. AA-
trees has fewer rotation cases so easier to code, particularly
deletions eliminates about half of the rotation cases. AA-
trees still have O (log n) searches in the worst case.

Contrasting to red-black trees, the red nodes on an AA
tree can be added only as a right sub child. Thus, no red
node can be a left sub-child, which results in the imitation
of a 2-3 tree instead of a 2-3-4 tree. It helps to simplify the
maintenance operations. And for a red-black tree this
maintenance algorithms need to consider seven different
shapes to properly balance the tree, while AA tree on
contrast only desires to consider two shapes due to the strict
condition that only right links can be red [14],[15].

The red-Black tree has high complexity as compared to
AA tree data structure which helped for modification in the
CFS approach used by implementing AA tree instead of
Red-Black Tree. In AA Tree instead of color the level of a
node is used as balancing information. Red nodes are
simply nodes that located at the same level as their parents.
The level of a node in an AA-tree is: (1) Leaf nodes are at
level 1. (2) Red nodes are at the level of their parent. (3)
Black nodes are at one less than the level of their parent.
The AA tree fulfills the properties of Red-Black trees along
with one addition to it:

• The color of each node is either red or black.

• The root is black.
• If a color of node is red then its children have to be

black.
• All paths from any node to a descendent leaf must

contain the same number of black nodes.
• Left children may not be red.

Figure 4: Example of AA Tree

This way AA trees help to simplify the algorithms as:
1. This removes half the restructuring cases
2. This also simplifies deletion eliminating an annoying

case
• Whenever it has only one child at internal node then

that child must be a red right child
• One can always replace a node with the smallest child

in the right sub tree

V. CFS ALGORITHM USING RB TREE AND AA TREE
The steps of proposed system are as follows.
• Create the sample tasks which will run in the

background. Code to get that task for scheduling and
assign the weights for each task.

• Find out the share allotment for each task. Find out the
time-slice that a task should receive in a period of time.
Also find out the virtual runtime for every schedulable
task.

• Initially use red-black tree data structure to track all the
runnable tasks. And fairly assign the CPU for each task
running.

• Compute the performance in terms of equality and
interactivity of the CFS scheduler.

• Now using realization of AA tree as an alternative of
Red-Black tree in CFS and calculate the performance
in terms of equality and interactivity of the CFS
scheduler.

• Finally compare the results of both approaches for
CFS.

VI. CONCLUSION

This paper has explored various CPU scheduling
techniques. The paper talks about the most popular Linux
CPU schedulers, O (1) and CFS. It also discusses how to
achieve interactivity and fairness in CFS. This is explained
by implementation of fairly divided time slice given to
every task and the nanoseconds accurate accounting. It
shows that how CFS algorithm is more efficient than O (1)
scheduler as CFS does not require a complex algorithm to
identify interactive tasks. As a contribution work, this paper
proposed alternative method called implementation of AA

Prajakta Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 913-917

www.ijcsit.com 916

tree for CFS. This proposed work is an ongoing project
which implements red black tree as well as AA tree for CFS
and compares the performance of the two methods.

REFERENCES
[1] I. Stoica et. al., “A Proportional Share Resource Allocation

Algorithm for Real-time and Time-shared Systems,” in Proc. 17th
IEEE Real-Time Systems Symp., Dec.1996.

[2] Steve Goddard Jian Tang, “EEVDF Proportional Share Resource
Allocation Revisited”.

[3] Chee Siang Wong, Ian Tan, Rosalind Deena Kumari, Fun Wey
“Towards Achieving Fairness in the Linux Scheduler”.

[4] C.S. Wong, I.K.T. Tan, R.D. Kumari, J.W. Lam W. Fun, “Fairness
and Interactive Performance of O(1) and CFS Linux Kernel
Schedulers”, IEEE 2008.

[5] MA Wei-feng, Wang lia-hai, “Analysis of the Linux 2.6 kernel
scheduler”, International Conference on Computer Design and
Applications (ICCDA 2010).

[6] Shen Wang, Yu Chen Wei Jiang Peng Li Ting Dai Yan Cui,
“Fairness and Interactivity of Three CPU Schedulers in Linux”, 15th
IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications 2009.

[7] A. Silberschatz, P.B. Gailvin, G. Gagne, “Operating System
Concepts,” 7th Edition, John Wiley & Sons Inc., 2005.

[8] Understanding the Linux 2.6.8.1 CPU Scheduler By Josh Aas 2005
Silicon Graphics, Inc. (SGI) 17th February 2005.

[9] Jones, T.: Inside the Linux 2.6 Completely Fair Scheduler_
Copyright IBM Corporation (2009).

[10] Molnar, I. 2007, Modular Scheduler Core and Completely Fair
Scheduler [CFS], http://lwn.net/Articles/230501/

[11] http://www.linuxjournal.com/magazine/completely-fair-scheduler
[12] The Linux Kernel Archives Website: www.kernel.org
[13] http://en.wikipedia.org/wiki/Red%E2%80%93black_tree.
[14] http://en.wikipedia.org/wiki/AA_tree
[15] http://www.cepis.org/upgrade/files/full-2004-V.pdf
[16] http://web.eecs.umich.edu/~sugih/courses/eecs281/f11/lectures/12-

AAtrees+Treaps.pdf
[17] Sergey zhuravlev, “Survey of Scheduling Techniques for Addressing

Shared Resources in Multicore Processors”, ACM Computing
Surveys, Vol. V, No. N, September 2011, Pages 1–31.

[18] https://www.linuxfoundation.jp/jp.../seminar20080709/lfjp2008.pdf

Prajakta Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 913-917

www.ijcsit.com 917

